基因组编辑
基因表达调控的方式有很多种,但不外乎在DNA水平、RNA或蛋白质水平进行调控。多数的方式仅能对基因进行高效的、瞬时的调控,这在某些应用场景下非常有优势。也可以通过质粒、转座子、病毒的随机整合或同源重组完成稳定的和可遗传的DNA修饰。但是,要实现位点特异性的整合是非常耗时且困难的。随着先进的基因组编辑工具不断被发现,位点特异性稳定修饰变得更容易实现。
在过去的十年中,锌指核酸酶(ZFN)和转录激活因子样效应核酸酶(TALEN)技术被确立为位点特异性基因组修饰的有用工具,但随着近规律间隔成簇短回文重复序列(CRISPR)技术的出现,它成为了另一种有效的替代方案。
通过基因组编辑靶向修饰细胞DNA为基础生物学研究、早期药物发现和新型细胞疗法(例如免疫疗法)的开发提供了强有力的工具。
CRISPR技术利用工程化核酸酶在靶基因组位置删除、插入或替换基因(Gaj et al., 2013)。Cas9核酸酶在基因组DNA中产生双链断裂,从而诱导两种可能的细胞修复过程:1.非同源末端连接(NHEJ)可导致功能基因的缺失,因为它在关闭断裂时通常伴随突变。2.如果可获得部分同源供体序列,则可通过同源依赖性修复(HDR)进行基因的插入或替换。为了在特定靶序列上进行这种修饰,核酸酶与序列特异性DNA结合,将核酸酶导向靶序列。
基因组编辑工具
如上所述,对于基因组编辑,工程化核酸酶用于在靶基因组特定位置删除,插入或替换基因。这种工程化核酸酶通常由两个元件组成:内切核酸酶DNA切割模块和序列特异性DNA结合结构域。核酸酶切割双链DNA,产生双链断裂(DSB)。DSB诱导细胞DNA修复过程。这可能会发生两种类型的修复过程,1.如果没有可用的同源供体片段-无论是相应的等位基因还是外部供体DNA-断裂的末端将被重新连接。该过程称为非同源末端连接(NHEJ),并且通常可能导致基因功能元件缺失的突变。
如果存在同源的序列,例如基因组等位基因或外源供体DNA,则可以通过同源重组修复(HDR)进行基因的插入或替换。NHEJ与HDR的频率取决于实验设置,例如细胞类型和供体量。
这些核酸酶与序列特异性DNA结合结构域的组合可以定制以识别几乎任何序列,以位点特异性的方式进行基因组编辑。
常用的位点特异性的基因组编辑工具有以下三种:
· ZFN
· TALEN
· CRISPR/Cas9
CRISPR/Cas9
CRISPR技术来源于细菌防御病毒入侵的途径,目前已经广泛地应用于真核生物的基因组编辑。相较于ZFN和TALEN,它更具有灵活性。
与ZFN和TALEN相比(详见下文),基于CRISPR的基因组编辑依赖于两个独立的组件一起工作:
DNA靶向部分: 所谓的靶向RNA(gRNA),通常与18-21bp的基因组DNA片段互补。
Cas9核酸酶:一旦gRNA与基因组DNA链配对,Cas9核酸酶就会切割基因组DNA,引起双链断裂。
由于DNA特异性部分是RNA分子,因此比ZF-或TALE-核酸酶融合蛋白更容易设计和生产。此外,通过将Cas9核酸酶与靶向不同位点的几种gRNA一起转移,可以进行多基因组编辑。
· 转入一个同时包含gRNA和Cas9核酸酶的质粒
· 共转入两个单独的质粒(一个含有gRNA,另一个包含Cas9)
· 共转一个包含Cas9的质粒和一个可以表达gRNA的PCR序列
· 体外组合的Cas9-gRNA的RNP复合物
· 如果是为了插入或替换,还需要再共转一个供体DNA质粒或一个单链核苷酸(ssODN)
1.广泛的细胞类型(包括iPSC)具有高转染效率
2.有效地共转染各种底物
3.使用简单,转染质粒、DNA、mRNA、PCR序列或ssODN时可采用相同的实验条件
(Ran et al., 2013) Nature Protocols出版物提供了关于使用4D NucleofectorTM系统进行CRISPR转染的非常全面的指南。
ZFN
锌指(ZF)蛋白是自然界中丰富和通用的DNA结合结构域(Tupler R et al., 2001)。单个锌指结构域结合3个DNA碱基对。由于它们的模块化结构,它们为设计人工序列特异性结合分子提供了理想的框架。ZF与内切核酸酶(主要是Fok1)的融合构建了锌指核酸酶(ZFN)。两种这样的ZFN组合起作用以结合靶DNA序列的有义和反义链。结合后,Fok1核酸酶形成活性二聚体并诱导双链断裂,引起随后的细胞修复过程。
TALEN
2009年,科学家们发现转录激活因子样效应子(TALEs)可作为更简单的模块化DNA识别蛋白(Boch et al., 2009; Moscou et al., 2009)。TALE是来自植物病原菌属Xanthomonas天然存在的蛋白质,并且含有DNA结合重复序列,每个重复序列识别单个碱基对。与锌指的基于三联体的DNA结合相比,TALE-DNA结合重复的这种单碱基识别模式使得设计具有更大的灵活性,但也存在一些克隆挑战。同样,工程化的TALE通常与Fok1核酸酶融合以构建TALE核酸酶融合物(TALEN)。与ZFN一样,必须为每个靶标产生一对TALEN,每个单体结合(Jinek et al., 2013) 靶DNA的有义或反义链。
引用文献
1.Gaj T et al. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31(7):397-405 (review)
2.Petit CS et al. (2013) J Cell Biol 202:1107-1122 (cells: HeLa)
3.Ran FA et al. (2013) Cell 154:1380–1389 (cells: various cell lines, e.g. HEK293FT)
4.Ran FA et al. (2013) Nat Prot 8(11):2281–2308 (cells: HEK293 and HUES62)
5.Seki and Rutz. (2018) J Exp Med 215(3):985-997
6.Tupler R et al. (2001) Nature 409: 832-833
7.Boch J et al. (2009) Science 326 (5959): 1509–12
8.Jinek M et al. (2013) eLife 2: e00471
9.Moscou MJ et al. (2009) Science 326 (5959): 1501
联系我们
关注微信或联系
地址:上海市浦东新区环科路999弄3号浦东国际人才港13号楼2楼
电话:400-820-3556
本研究旨在研究循环急性期脑源性tau(BD-tau)是否与缺血性卒中后的功能结果相关。 研究纳入Sahlgrenska Academy缺血性卒中研究队列(SAHLSIS),通过一种特异性量化BD...
天府锦城实验室(前沿医学中心)近日成功完成Beacon®单细胞光导系统的安装和操作培训。该实验室是经四川省委省政府批准设立的首批天府实验室组成部...
动物模型传统评估方法不给力?瑞孚迪荧光探针来助力! 动物实验在药物研发中发挥着重要的作用,尤其在药物的药效评价和药物的安全性评价中发挥着举足轻重的作用。 提...
投诉与建议